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SUMMARY

The broadly neutralizing antibody 2G12 binds a fairly
conserved cluster of oligomannose sugars on the
HIV surface glycoprotein gp120, which has led to
the hypothesis that these sugars pose potential
vaccine targets. Here, we present the chemical
analysis, antigenicity, and immunogenicity of a
bacterial lipooligosaccharide (LOS) comprised of a
manno-oligosaccharide sequence analogous to the
2G12 epitope. Antigenic similarity of the LOS to oli-
gomannose was evidenced by 2G12 binding to the
LOS and the inability of sera elicited against synthetic
oligomannosides, but incapable of binding natural
oligomannose, to bind the LOS. Immunization with
heat-killed bacteria yielded epitope-specific serum
antibodies with the capacity to bind soluble gp120.
Although these sera did not exhibit specific anti-
HIV activity, our data suggest that this LOS may
find utility as a template for the design of glycoconju-
gates to target HIV.

INTRODUCTION

One of the greatest scientific hurdles still facing the development

of an effective HIV vaccine is the design of an immunogen that

elicits antibodies with the capacity to neutralize the infectivity

of an antigenically diverse range of HIV strains (Burton et al.,

2004; Johnston and Fauci, 2008). The target for HIV-neutralizing

antibodies (nAbs) is the virus envelope spike, a trimeric complex

formed by heterodimers of the glycoprotein subunits gp120 and

gp41. Gp120, the larger of the two subunits, is themain target for

nAbs. Roughly 50% of gp120’s molecular mass is comprised of

carbohydrate imparted by the host cell glycosylation machinery.

Normally, such carbohydrates would not be expected to be

sensed as foreign by the host immune system, except that their

dense clustering on gp120 is atypical of host glycosylation

(Wyatt et al., 1998). Indeed, clustered carbohydrates on gp120
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are of interest for HIV vaccine design because of the description

of the broadly neutralizing human monoclonal antibody (mAb)

2G12 (Trkola et al., 1996) andmore recently of additional broadly

neutralizing anticarbohydrate mAbs (Walker et al., 2011). 2G12

binds a specific cluster of oligomannose moieties (Sanders

et al., 2002; Scanlan et al., 2002; Trkola et al., 1996) located

within a �1,000 Å2 surface on gp120 covered densely with

host-derived carbohydrates that protect the underlying protein

surface from NAb recognition (Wyatt et al., 1998). Crystal struc-

tures of 2G12 in complex with various synthetic carbohydrates

show that 2G12 binds preferentially to the distal a-D-Man-(1/

2)- a-D-Man disaccharide found in the so-called D1 arm of oligo-

mannose (Figure 1; Calarese et al., 2003, 2005; Lee et al., 2004).

Given that 2G12 binds an oligomannose cluster, the general

strategy aimed at eliciting 2G12-like antibodies has been to

immunize with antigenic clusters of oligomannose that are

supposed to mimic the carbohydrate-covered gp120 surface

(reviewed in Astronomo and Burton, 2010). Attempts to elicit

2G12-like antibodies have relied largely on glycochemistry based

designs, ranging from simplified linear tetrasaccharide structures

that encompass the 2G12 core mannosyl epitope to the presen-

tation of branched oligomannosides that mimic those present

on HIV gp120 (Astronomo et al., 2008, 2010; Doores et al.,

2010c; Joyce et al., 2008; Li and Wang, 2004; Ni et al., 2006;

Wang et al., 2004, 2007). Although several of these neoglyconju-

gates are recognized by 2G12, none so far have elicited carbohy-

drate-specific antibodies capable of binding recombinant gp120

or neutralizingHIV. A second strategy to elicit 2G12-like nAbs has

been to utilize genetically engineered Saccharomyces cerevisiae,

expressing mainly Man8 oligomannose (Agrawal-Gamse et al.,

2011; Dunlop et al., 2010; Luallen et al., 2008, 2010; Scanlan

et al., 2007). Whereas antibodies capable of binding monomeric

gp120 have been reported upon immunization with engineered

yeast cells (Agrawal-Gamse et al., 2011; Dunlop et al., 2010),

only in one of these studies did the elicited antibodies display

statistically significant, albeit very modest, neutralization of

HIV-1 compared to control immune sera (Dunlop et al., 2010).

The limited success of current strategies aimed at eliciting

2G12-like antibodies prompted us to search for potential alterna-

tive avenues. Carbohydrate conjugate vaccines for protection
vier Ltd All rights reserved
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Figure 1. Chemical Structures of Oligoman-

nose (Man9) and the Carbohydrate Back-

bone of R. radiobacter Rv3 LOS

(Top) Oligomannose Man9, with the three

mannose oligosaccharide branches referred to as

D1, D2, and D3 indicated on the left. All mono-

saccharides are D configured and in the pyranose

form. 2G12 binds theD1 arm (orange-red highlight)

preferentially (Calarese et al., 2003 and 2005).

(Middle) Rv3 LOS backbone structure. All mono-

saccharides are D configured and in the pyranose

form. Residue labeling reflects the letters used

during NMR attribution (Tables 1 and S1). This

structure represents the major component of the

LOS fraction, namely, OS1. The minor component

of the LOS fraction (OS2) lacks the gray-colored

residues. Note that the residue sequence (E)-(C)-

(B)-(D) is analogous to the D1 arm of Man9 oligo-

mannose. Furthermore, a-mannose residue (F) is

(1/6)-linked to residue (D), which resembles

the branching of the D2 arm of oligomannose. The

generic substituents designated R on residues (A)

and (H) represent the fatty acids of the lipid A

moiety on Rv3 LOS.

(Bottom) Chemical structures of the mono-

saccharides found in Rv3 LOS.
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against bacterial infections have proven very efficacious (re-

viewed in Astronomo and Burton, 2010; Finn, 2004; Lucas

et al., 2010; Vliegenthart, 2006); for example, capsule-derived

carbohydrates coupled to appropriate carrier proteins can

provide durable protection against encapsulated bacteria (Blan-

chard-Rohner and Pollard, 2011; Heath, 2011). We reasoned

that a bacterial polysaccharide with antigenic similarity to the

2G12 epitope might prove a better way to elicit the anticarbohy-

drate nAbs to HIV-1.

Here, we report on such a bacterial lipooligosaccharide (LOS)

in which the epitope of 2G12 occurs naturally. Our investigation

was prompted by knowledge of the chemical structure of the

lipooligosaccharide (LOS) from the soil bacterium Rhizobium

radiobacter Rv3 (De Castro et al., 2008), referred to here as

simply Rv3. The detailed chemical analysis of the Rv3 LOS re-

vealed that its carbohydrate backbone consists of a unique

tetramannose segment that is analogous to the D1 arm of oligo-

mannose (Figure 1). We found that 2G12 binds with reasonable

affinity to purified Rv3 LOS and even stronger to Rv3 bacterial

cells. These observations led us to examine whether immuniza-

tion with heat-killed Rv3 bacteria might result in anticarbohy-

drate antibodies capable of neutralizing HIV. The elicited anti-

bodies bound the core 2G12 epitope and monomeric gp120

but failed to exhibit significant anti-HIV neutralizing activity.

Nevertheless, our data suggest that the unique presentation of

an antigenic analog of the 2G12 epitope in Rv3 LOSmay provide

an alternate avenue for the design of glycoconjugates aimed at

eliciting nAbs to the dense array of oligomannose on HIV-1.

RESULTS

Rv3LOSContains a TetramannoseBackboneAnalogous
to the D1 Arm of Mammalian Oligomannose
Bacterial LOS was sequentially extracted from dried bacterial

cells in accordance with the petroleum ether chloroform
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phenol (PCP) and the hot phenol/water methods (Galanos

et al., 1969; Westphal and Jann, 1965), and a pure LOS frac-

tion was obtained from the PCP extract. Sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the

LOS fraction gave a mobility profile characteristic of lipooligo-

saccharide species (Hitchcock and Brown, 1983). Combining

the information from monosaccharide composition and

methylation analysis, we determined that the LOS fraction

contained mainly terminal, 2- and 3,6 substituted D-mannose,

terminal D-galactose and minor amounts of 3-substituted

D-mannose; 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo)

and phosphorylated glucosamine were not detected with the

methylation protocol used. Fatty acids analysis showed the

presence of C14:0 (3-OH), C16:0 (3-OH), C18:1 (3-OH), and

C28:0 (27-OH)—lipids that are distinctive for this bacterial

family (Silipo et al., 2004). The Rv3 LOS extracted from

R. radiobacter Rv3 was completely delipidated, and the result-

ing oligosaccharide mixture purified by high-performance

anion-exchange chromatography (HPAEC). Two oligosaccha-

ride species, OS1 (�70%) and OS2 (�30%), were separated

and their chemical structures determined by nuclear magnetic

resonance (NMR).

NMR Spectroscopical Assigment of Rv3 LOS
The complete assignment of 1H and 13C resonances of oligosac-

charides OS1 and OS2 was achieved by combining data

obtained from 2D homo- and heteronuclear spectra (Figure 2A).

For OS1 spectra attribution (Table 1; Figure 2B), the eight

anomeric protons were labeled with a capital letter (A–H) in

decreasing order of chemical shifts. The two couples of the dia-

stereotopic methylene signals observed in the high-field region

of the proton spectrum denoted the presence of two 2-keto-3-

deoxy-D-manno-octulosonic acid (Kdo) residues, Kint and Kext.

Thus, a decasaccharide structure was identified for the OS1

species of the deacylated Rv3 LOS.
–263, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 255



Figure 2. Spectroscopic Analysis of Rv3 Oligosaccharides Reveals a Carbohydrate Backbone that Is Analogous to the D1 Arm of Oligoman-

nose

(A) Proton spectra of Rv3 OS1 (bottom; in 600 ml of NaOD 10 mM) and OS2 (top; in 600 ml of D2O) measured at 600 MHz, 303 K.

(B) Attribution of anomeric region of the gHSQCTOCSY (black) and gHMBC (gray) spectra measured for OS1 (600 MHz, 303 K, 10 mM NaOD). Differently from

TOCSY spectrum, magnetization propagation was not observed for GlcN1P residue A.
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The anomeric protons of residues A andH showed six different

TOCSY correlations, and on the basis of their ring, proton and

carbon resonances were recognized as the two GlcN moieties

of the lipid A moiety of the oligosaccharide. For residues B–F,

the TOCSY and gHSQCTOCSY spectra of the anomeric region
Table 1. 1H- and 13C NMR Spectral Assignments for the OS1 Oligos

1 2

6)-a-GlcN1P 5.41 2.70

A 95.8 56.8

2)-a-Man-(1/ 5.36 4.08

B 102.1 79.8

2)-a-Man-(1/ 5.29 4.12

C 101.9 79.7

3,6)-a-Man-(1/ 5.18 4.28

D 102.3 71.1

t-a-Man-(1/ 5.05 4.07

E 103.4 71.3

t-a-Man-(1/ 4.93 4.03

F 101.0 71.2

t-b-Gal-(1/ 4.50 3.54

G 104.6 72.2

6)-b-GlcN4P-(1/ 4.41 2.67

H 104.2 57.5

3eq-3ax 4

8)-a-Kdo-(2/ 2.13; 1.83 4.00

Kext 36.0 67.4

4,5)-a-Kdo-(2/ 2.10; 2.00 4.05

Kint 35.8 72.6

Spectra (shown in Figure 2) were recorded at 600 MHz (1H; roman font) and

residues for Kext and Kint were identified in the HMBC spectrum at 103.5 a

Spectra assignments for the OS2 oligosaccharide are provided in Table S1

* These signals can be interchanged.
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proved problematic for establishing connectivity after the H-2

proton because of the small 3JH1,H2 and 3JH2,H3 coupling con-

stants values (Figure 2B). However, magnetization was pro-

pagated from the H-2 proton up to the H-6 s. Based on the value

displayed from their C-5 residues, B–F were determined as
accharide of R. radiobacter Rv3

3 4 5 6

3.62 3.49 4.09 3.78; 4.28

74.7 71.1 72.8 70.6

3.99 3.69 3.80 3.88; 3.66

71.6 68.3 74.8 62.3

3.98 3.67 3.76 3.89 3 2

71.3 68.3 74.6 62.3

3.99 3.98 4.20 4.12; 3.66

80.4 66.5 72.9 66.4

3.86 3.63 3.76 3.75 3 2

71.6 68.1 74.5 62.4

3.88 3.66 3.67 3.77 3 2

71.9 68.1 74.0 62.4

3.72 3.95 3.76 3.80 3 2

73.9 69.9 76.4 62.2

3.57 3.64 3.64 3.78; 3.46

77.3 74.5* 75.6* 70.5

5 6 7 8

4.01 3.86 4.30 4.19; 3.93

68.5 73.0 70.8 72.1

4.22 3.73 3.74 3.86; 3.76

75.4 73.0 70.9 64.4

150 MHz (13C; italics) at 303 K in 10 mM NaOD in D2O (600 ml). The C-2

nd 100.8 ppm, respectively. The C-1 for Kext and Kint was not detected.

.

vier Ltd All rights reserved



Figure 3. 2G12 Binds Rv3 LOS

(A) Binding of serially diluted antibody 2G12 to graded concentrations of Rv3 LOS coated directly onto microtiter plates. In contrast, rabbit sera raised against

synthetic oligomannosides, comprising the D1 arm of mammalian oligomannose, do not recognize Rv3 LOS (Figure S1).

(B) Binding of serially diluted antibody 2G12 to recombinant gp120 in the absence (buffer control) or presence of fixed concentrations of inhibitors gp120ADA,

D-mannose and Rv3 LOS. Antibody was mixed for 1 hr at room temperature with buffer or inhibitor and then added to gp120-coated wells of a microtiter plate.

(C) 2G12 binding to gp120 is inhibited by heat-killedR. radiobacter Rv3 cells. Serially diluted antibody wasmixed with buffer or graded amounts of heat-killed Rv3

bacteria for 1 hr at RT. The mixtures were then added to microtiter plate wells coated with recombinant monomeric gp120.

Error bars denote the signal ranges from replicate wells.
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representing different types of a configured mannosyl residues,

with residues B and C both glycosylated at O-2, residue D

substituted at both O-3 and O-6, and both residues E and F

terminal. Residue G was determined as being a b-configured

Gal unit on the basis of its anomeric carbon chemical shift at

104.6 ppm and its coupling constant 3JH1,H2 7.8 Hz. The TOCSY

spectrum related the anomeric proton up to H-4, whereas H-5

position was established analyzing the TROESY spectrum and

assessing the spatial proximity of these two protons. Ring

carbon values suggested the terminal location of this residue.

For the two Kdo residues, the recognition of the internal unit

Kint was made possible by a key NOE effect, relating the equato-

rial H-3 proton of this residue with H-6 of the external unit Kext

(Holst et al., 1995). Scalar connectivities between the other

exocyclic Kdo protons were also clearly present and carbon

chemical shift identified Kext as an O-8 glycosylated Kdo,

whereas Kint was substituted at both O-4 and O-5.

Residue sequence was established based on scalar gHMBC

connectivities (Figure 2B). Starting from the terminal nonre-

ducing end, residue Ewas determined as linked atO-2 of residue

C, which was linked at O-2 of residue B, and this residue in turn

linked at O-3 of D, which was the substituent at O-5 of Kint. The

other terminal Man unit, residue F, was linked atO-6 of residueD,

whereas residue G (Gal) was determined as located at O-8 of

Kext. The OS1 structure was completed by placing Kint at O-6

of residue H (GlcN).

For OS2, spectra interpretation followed the same approach

as described above for OS1. The analysis was simplified

because of the lower number of residues constituting the mole-

cule. Complete spectra attribution (Table S1 available online)

identified a structure differing from that of OS1 by the absence

of the F and G units, corresponding to the terminal Man and

Gal residues, respectively (Figure 1).

Rv3 LOS Is Antigenic for mAb 2G12
We next investigated whether 2G12 could bind Rv3 LOS by first

examining the ability of 2G12 to bind Rv3 LOS directly in an

enzyme-linked immunosorbent assay (ELISA). We found that

2G12 could indeed bind the LOS (Figure 3A), albeit that a fairly

highconcentration of LPSwas required toobserve strongbinding

(100 mg/ml, equivalent to 30 mM). To avoid the possible caveat of

poor Rv3 LOS coating of microtiter plates, we also assessed the
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ability of Rv3 LOS to inhibit 2G12 binding to recombinant gp120

(Figure 3B).Weobserved that solubleRv3LOSat 30mM, reduced

the apparent affinity of 2G12 by nearly 10-fold relative to the

buffer-only control. No significant inhibition of 2G12 binding to

gp120 was observed with D-mannose at a similar concentration

(50 mM), indicating that the inhibitory activity of Rv3 LOS is

specific to its structural composition and not simply due to the

presence of mannose residues. The level of inhibition observed

for Rv3 LOS (85% reduction in apparent affinity relative to

buffer-only control at 30 mM LOS) is better than that obtained

using soluble synthetic oligomannosides or Man9GlcNAc2
(65%–80% inhibition at 2 mM; Lee et al., 2004) and in the same

range as reported with oligomannose dendromers (10 mM;

Walker et al., 2011); thus, this result strengthens the notion that

the Rv3 LOS backbone is antigenically similar to the D1 arm in

mammalian oligomannose and that presentation of theD1analog

in Rv3 LOS is antigenically favorable for 2G12 recognition.

We next examined whether 2G12 binding to Rv3 LOSwould be

enhanced if the LOS is displayed mutivalently, as observed with

oligomannose (Astronomoet al., 2008, 2010). Asa sourceofmulti-

valently presented LOS, we prepared heat-killed bacteria and

examined their ability to inhibit 2G12 binding to gp120. We found

that 2G12 binding signals decreased with increasing concentra-

tion of bacteria, with the largest reduction in apparent antibody

affinity observed with 1011 cells/ml (�2 log reduction relative to

buffer-only control; Figure 3C). The concentration of 1011 cells/ml

corresponds to an estimated LOS concentration of 15–150 mM,

based on the yield of LOS from extracted bacteria. Given that

the level of inhibition observed with the bacteria matches that of

2G12 inhibition by monomeric gp120, we concluded that the

multivalent display of Rv3 LOS on bacterial cells resembles, at

least to some extent, the oligomannose cluster on HIV-1 gp120

that constitutes the site of interaction with 2G12. This notion was

strengthenedby the inability of synthetic oligomannoside-specific

rabbit sera, shown previously to be incapable of binding HIV

gp120 (Astronomo et al., 2010), to recognize Rv3 LOS (Figure S1).

Immunization with Heat-Killed Rv3 Cells Elicits
Tetramannose-Specific Antibodies that Recognize
Monomeric HIV gp120
To further examine whether Rv3 LOS on the surface of bacteria

approximates oligomannose clusters on HIV gp120, C57/BL6
–263, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 257



Figure 4. Immunization of Mice with Heat-Killed R. radiobacter Rv3 Elicits Antibodies Specific for the D1 Arm of Oligomannose with the

Capacity to Bind Monomeric gp120

(A) Sera from immunized animals were collected two weeks following the second booster injection. The sera were pooled and a serial dilution thereof was

examined for binding to Rv3 LOS (100 mg/ml) and BSA-Man4 (5 mg/ml) coated directly onto microtiter plates.

(B) Detergent-treated supernatant containing pseudotyped virus JRCSF was used as the antigen source for capture of solubilized gp120 onto microtiter plates.

Serially-dilutedmouse sera were then added and bindingmeasured at 405 nm. Two of the 8 sera (serum #22 and #23) boundmost strongly to the captured gp120.

Error bars denote the signal ranges from replicate wells.
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mice were immunized with heat-killed whole bacteria. Sera ob-

tained two weeks after the final booster injection were used for

further analyses. Despite the likelihood of having elicited anti-

bodies to bacterial proteins, we observed reasonably strong

binding of pooled sera to purified Rv3 LOS in ELISA (Figure 4A).

The sera also bound to the bovine serum albumin (BSA)-Man4

glycoconjugate (Figure 4A), which is also recognized by 2G12

(Astronomo et al., 2008), suggesting that a large fraction of the

antibodies were raised against the D1 analog portion of the

molecule.

We next assessed whether the elicited antibodies could

bind solubilized gp120 from pseudovirus lysates captured onto

microtiter plate wells. This approachwas used because of recent

indications of differences between glycoforms found on re-

combinant gp120 and virus-associated gp120 (Doores et al.,

2010a). Of the eight sera, two bound with moderate affinity to

monomeric gp120, whereas the remaining sera bound substan-

tially less strongly (Figure 4B). The ability of some but not all sera

to bind with good affinity to gp120 suggests that not all elicited

antibodies interacted with the D1 arm of oligomannose in a

similar manner.

Antibodies Elicited with Heat-Killed Rv3 Cells Do Not
Exhibit Neutralizing Activity
Despite the overall modest binding of sera to soluble gp120, we

wished to examine whether the level of anticarbohydrate anti-

bodies elicited with Rv3 cells might neutralize HIV. Two HIV-1

strains, JRCSF and TRO.11, were used that exhibit moderate,

so-called tier-2, sensitivity to antibody-mediated neutralization

(Binley et al., 2004; Seaman et al., 2010) and as such are

representative of most circulating HIV-1 strains. Both viruses

are sensitive to 2G12 neutralization, albeit that TRO.11 is slightly

more sensitive to 2G12 neutralization than is JRCSF (Binley et al.,

2004; Li et al., 2005). We also assessed neutralizing activity

against SIVmac239, which, like HIV-1, is heavily glycosylated

but is not recognized by 2G12 (Stansell and Desrosiers, 2010).

At the lowest serum dilution tested (1:10), we observed what

seemed like modest neutralization (�60%) against TRO.11 (Fig-

ure 5A); no activity was observed against JRCSF or SIVmac239.

To assess whether the activity against TRO.11 was specific, we
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utilized the vesicular stomatitis virus (VSV), which expresses

mainly complex carbohydrates on its surface (Hunt et al., 1978).

We found that the sera also blocked VSV infectivity, with no

statistical difference relative to the activity against TRO.11 (Fig-

ure 5B). From these results, we concluded that, despite the pres-

ence of antibodies in the sera that are specific for the 2G12

epitope, these antibodies are not of sufficient affinity and/or

lack proper fine specificity to effectively neutralize HIV.

DISCUSSION

This study is, to the best of our knowledge, the first to report

the elicitation of anticarbohydrate antibodies to HIV with a

Gram-negative bacterium that naturally expresses an antigenic

tetramannose structure that closely resembles the D1 arm of

oligomannose. The most notable difference is the anomeric

configuration of the mannosyl residue (residue D; Figure 1) at

the reducing end of the D1 analog, being a rather than b as is

found in oligomannose. Although bacteria with mannan-only

polysaccharides have been described previously, none express

structures that resemble the D1 arm of oligomannose as closely

as it occurs in the Rv3 LOS. The nearest resemblance in chem-

ical structure to D1 described to date is found in the O-polysac-

charides of Escherichia coli O8 and O9, Klebsiella pneumoniae

O3 and O5, and Hafnia alvei strain PCM 1223 (Curvall et al.,

1973; Jansson et al., 1985; Katzenellenbogen et al., 2001; Lind-

berg et al., 1972; Prehm et al., 1976). However, unlike Rv3 LOS,

none of these O-polysaccharides contain a terminal tetraman-

nose structure similar to D1, and all are linear polymers.

The extent of antigenic similarity between Rv3 LOS and oligo-

mannose, particularly as might be presented on HIV gp120,

remains to be determined. Crystal structures of 2G12 in complex

with Rv3 LOS should help to address this question and are

planned. Notably, antimannose serum antibodies elicited by

immunization with synthetic oligomannoside conjugates (As-

tronomo et al., 2010) failed to bind the Rv3 LOS. These serum

antibodies, while specific for the synthetic oligomannosides,

do not recognize (or neutralize) HIV. The lack of binding of these

sera to the Rv3 LOS suggests that it does not present the neo-

epitopes found on synthetic oligomannosides.
vier Ltd All rights reserved



Figure 5. Rv3 Mouse Sera Do Not Specifically Inhibit HIV-1 Infectivity

(A) Pseudotyped HIV-1 strains TRO.11 and JRCSF were tested alongside virus SIVmac239 for their sensitivity to neutralization by antibody 2G12 (left) and serially

diluted pooled mouse sera (right). Error bars denote the signal ranges from replicate wells.

(B) Pooled mouse sera was tested for nonspecific neutralizing activity utilizing vesicular stomatitis virus, which does not express high-mannose oligomannose on

its surface. Pooled sera were tested at a single dilution of 1:10 alongside virus TRO.11. Error bars denote the standard error of measurement.
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Ourmost relevant findings—that heat-killed Rv3 bacteria were

able to elicit antibodies that can bind HIV gp120—demonstrate

the potential utility of Rv3 LOS as a design template for strategies

aimed at eliciting 2G12-like antibodies. We do not know whether

one or both Rv3 LOS species (OS1 or OS2; Figure 1) might be

responsible for eliciting the response obtained. Given that the

D1 analog is present in both oligosaccharides, there is some

likelihood that both may be capable of inducing the D1-specific

responses. One group reported very weak serum neutralizing

activity upon immunization with a yeast strain engineered to

express predominantly Man8 oligomannose, with IC50’s at or

around 1:5 on average (Dunlop et al., 2010), whereas another

group only observed neutralizing activity against pseudotyped

viruses produced in the presence of the mannosidase inhibitor

kifunensine such that they unnaturally carry only oligomannose

sugars on their surface (Agrawal-Gamse et al., 2011). Disap-

pointingly, we did not observe specific neutralizing activity

against any of the HIV strains tested here (Figure 5). Due to

volume limitations as a result of doing our immunizations in

mice, wewere not able to assess whether our sera can neutralize

viruses carrying only oligomannose sugars.

The specific reason for the lack of neutralizing activity is

unclear but will require closer investigation in future studies.

One of the most likely factors is the relatively low affinity of the

elicited antibodies, as suggested by our ELISA binding data for

monomeric gp120 (Figure 4). 2G12 achieves high-affinity binding

as a result of its VH domain-exchanged structure, which allows it

to interact multivalently with the dense array of oligomannose on

gp120 (Calarese et al., 2003). Whereas an engineered Y-shaped

2G12 antibody failed to bind monomeric gp120 with high affinity

(Doores et al., 2010b), domain-exchange is not the only solution

for achieving high-affinity binding to oligomannose on gp120 as

evidenced by the recent description of non-domain-exchanged

antibodies with high affinity for oligomannose on HIV-1 (Walker

et al., 2011). Immunization strategies that result in high-affinity

anticarbohydrate antibodies will therefore need to be explored.

Indeed, both the Dunlop et al. and Agrawal-Gamse et al. studies

suggest that, whereas antimannose antibodies specific for oligo-

mannose can be elicited in principle (Agrawal-Gamse et al.,

2011; Dunlop et al., 2010), these antibodies bindmost effectively

when the oligomannose moieties are extensively arrayed—for

example, as presented when monomeric gp120 is coated onto
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wells of a microtiter plate or on kifunensine-produced virus parti-

cles. Whereas experimentally elicited antimannose antibodies

most likely bind bivalently to their target epitope under such

conditions, these antibodies can likely only bind monovalently

to oligomannose on native virus.

In summary, we show here that R. radiobacter Rv3 LOS,

comprised of a tetramannose oligosaccharide backbone that is

analogous to the epitope of the broadly neutralizing mAb

2G12, represents, to the best of our knowledge, a novel template

for the elicitation of oligomannose-specific nAbs to HIV-1. Opti-

mizing the presentation of Rv3 LOS will be required to elicit the

desired antibody response, possibly along with tricks to boost

the response, for example, using select adjuvants. Investigations

into immune conditions conducive to the elicitation of antibodies

that recognize oligomannose with high affinity will also be

important.

SIGNIFICANCE

Antibodies with broad HIV-neutralizing activity serve to

pinpoint conserved sites on the virus that are potential

targets for vaccine design. The humanmAb2G12 neutralizes

�40% of HIV strains in vitro and provides sterilizing immu-

nity at relatively modest serum titers in macaque models

of HIV infection. Given that 2G12 recognizes the D1 arms

of clustered oligomannose sugars on the surface of HIV

gp120, strategies to elicit anticarbohydrate neutralizing-

antibodies (nAbs) to HIV have focused mainly on trying to

mimic oligomannose clusters on gp120 using presentations

of oligomannosides; however, these approaches have had

minimal success.

The glyco-immunogen presentations pursued so far may

be too similar to oligomannose presentation on host cells

and thus fail to elicit robust responses. We have reasoned

that a bacterial polysaccharide with antigenic similarity to

the 2G12 epitope might prove a better way to elicit the

desired anticarbohydrate antibody response. In this paper

we show that the LOS of R. radiobacter Rv3 contains

a unique tetramannoside that is antigenically similar to the

D1 arm of natural oligomannose, as judged by 2G120s affinity
for it. Furthermore, immunization with heat-killed Rv3

bacteria elicited carbohydrate-specific antibodies with
–263, February 24, 2012 ª2012 Elsevier Ltd All rights reserved 259
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modest affinity for monomeric gp120 but no significant

HIV-specific neutralizing activity. The results support inves-

tigating Rv3 LOS further as a possible means by which to

elicit anticarbohydrate nAbs to HIV. The particular attrac-

tiveness of Rv3 LOS is its bacterial origin, which means

that there is a reasonable likelihood of it being recognized

as ‘‘foreign,’’ yet the target structure is sufficiently similar

to oligomannose so that many elicited antibodies are likely

to be cross-reactive. Rv3 LOS is also attractive because of

the proven efficacy of bacterial carbohydrate-based

vaccines. Studies exploring the presentation of glycoconju-

gate immunogens that incorporate the Rv3 LOS should help

to delineate the best presentation for eliciting robust levels

of anticarbohydrate antibodies to HIV-1.

EXPERIMENTAL PROCEDURES

Bacterial Growth and LOS Extraction

R. radiobacter Rv3 strain DSM 30207 was grown in a shaker incubator

(200 rpm) at 27�C in nutrient broth for 40 hr (early stationary phase). The bacte-

rial suspension was pelleted (3500 g for 15 min) and the biomass then washed

sequentially with 0.85% NaCl, ethanol, acetone, and diethyl ether. Dried cells

(yield 275 mg/l) were subjected to extraction by the PCP method (Galanos

et al., 1969), yielding an LOS fraction (2% gLOS/gcells). The PCP-extracted

pellet was then subjected to a phenol-water extraction (Westphal and Jann,

1965), and LOSwas found in the water phase only (7.5% gLOS/gcells). However,

successive analyses demonstrated that this preparation was highly contami-

nated with cyclic b-glucans that are commonly present in the periplasmatic

space of rhizobia (Breedveld and Miller, 1994). Therefore, only the PCP-

extracted LOS was used in further analyses.

General and Analytical Methods

Rv3 LOS was stained with silver nitrate (Kittelberger and Hilbink, 1993)

following SDS-PAGE using a 12% separating gel on a miniprotean gel system

from BioRad (Hercules, CA, USA). Determination of fatty acid and sugar

composition, including determination of the absolute configuration of mono-

saccharides, and glycosyl-linkage analysis was performed as described

elsewhere (De Castro et al., 2010).

Isolation of Oligosaccharides OS1 and OS2

PCP-extracted LOS (60mg) was dissolved in anhydrous hydrazine (25 mg/ml),

stirred at 37�C for 30 min, cooled, poured into ice-cold acetone (15 ml), and

allowed to precipitate. The solid was centrifuged (6000 g for 30 min), washed

twice with ice-cold acetone, dried, and then dissolved in water and lyophilized

(50 mg). The sample was de-N-acylated with 4 M KOH as described (Holst,

2000) and desalted by gel-permeation chromatography using a Sephadex

G-10 (Pharmacia, New York, USA) column (50 3 1.5 cm, in water, flowrate

0.5 ml/min). The resulting oligosaccharide fraction (9 mg) was eluted in the

void volume and further purified by HPAEC on a Carbopack PA-100 column

(9 3 250 mm), followed by elution with a linear gradient of 30%–37% of 1 M

sodiumacetate in 0.1MNaOHat 2ml/min for 100min. Under these conditions,

two oligosaccharides, designated OS1 andOS2, with retention times of 41 and

62 min, respectively, were recovered. OS1 and OS2 were desalted as

mentioned previously, yielding 1.5 mg and 0.7 mg, respectively.

NMR Spectroscopy

All NMR experiments were carried out on a Bruker DRX-600 spectrometer

equipped with a cryo probe operating at 303 K. Chemical shift of spectra

recorded in D2O are expressed in d relative to internal acetone (2.225 and

31.4 ppm). Two-dimensional spectra (DQ-COSY, TOCSY, TROESY, gHSQC,

gHMBC, and gHSQCTOCSY) were measured using standard Bruker software.

For all experiments, 512 free induction decays of 2048 complex data points

were collected; 40 scans per FID were acquired for homonuclear spectra

and mixing times of 120 ms and 250 ms for TOCSY and TROESY spectra

acquisition, respectively. The spectral width was set to 10 ppm, and the
260 Chemistry & Biology 19, 254–263, February 24, 2012 ª2012 Else
frequency carrier was placed at the residual HOD peak. For the gHSQC spec-

trum, 50 scans per FID were acquired, and the GARP sequence was used for
13C decoupling during acquisition. gHSQCTOCSY and gHMBC scans doubled

those of gHSQC spectrum, and these sequences were not measured for OS2

because of the low amount of compound available. Data processing was per-

formed using the Bruker Topspin 3 program, and the spectra were assigned

using the computer program Pronto (Kjaer et al., 1994).

Preparation of Heat-Killed bacteria

Single colonies of R. radiobacter Rv3 were cultured in Luria Bertani (LB) broth

without antibiotics overnight at 25�C. Aliquots of the overnight cultures

were then spread onto plain LB media plates and incubated overnight at

30�C. The bacteria were subsequently harvested and resuspended in 1 ml

phosphate buffered saline (PBS) per plate. The cell concentration was

determined spectrophotometrically using a standard conversion factor

(OD600 = 109 cells/ml), and the total volume adjusted with PBS to 1011 cells/ml.

Based on the yields for Rv3 LOS above, this concentration of bacteria corre-

sponds to an LOS concentration of �15–150 mM. To obtain heat-killed

bacteria, cell suspensions were incubated for 1 hr at 100�C. Heat-killed

bacteria were aliquoted and stored at �20�C until needed.

Mouse Immunizations

All animal immunizations were performed under contract at Spring Valley

Laboratories, Inc., (Woodline, MD, USA) following approval of the submitted

protocol. All experiments followed guidelines set out by the University

Animal Care Committee. Immediately prior to each immunization, aliquots of

heat-killed bacteria (1 ml) were mixed with an equal volume of PBS. Mice

(C57/BL6; n = 8) were injected subcutaneously with 0.2 ml of the heat-killed

bacteria/PBS mixture, corresponding to 1010 bacteria, on days 0, 28, and

84. The animals were exsanguinated 2 weeks after the last injection. Sera

were obtained and stored at �20�C.

Monoclonal Antibodies, Rabbit Sera, and Purified Proteins

The antibody 2G12 was generously donated by Hermann and Dietmar Ka-

tinger (Polymun Scientific, Klosterneuburg, Austria). Two sets of rabbit anti-

sera, raised against synthetic tetramannoside (Man4) and oligomannoside

(Man9) (Astronomo et al., 2010), a BSA-Man4 glycoconjugate, recombinant

gp120 derived from virus ADA, and mAb b12 were provided by the Burton

laboratory at The Scripps Research Institute and IAVI Neutralizing Antibody

Center (La Jolla, CA, USA). Recombinant gp120 derived from the virus

JR-FL was made in-house from stably transfected CHO-K1 cells (Pantophlet

et al., 2003). The construct was appended with a C-terminal HIS tag to facili-

tate purification of the overexpressed protein.

Pseudovirions and Solubilized gp120

Plasmids encoding the envelope glycoproteins of the viruses TRO.11 (TRO,

clone 11 [SVPB12]; Li et al., 2005) and vesicular stomatitis virus (pHEF-

VSVG; Chang et al., 1999) and the reporter plasmid pNL4-3.Luc.R-E- encod-

ing HIV-1 structural proteins and a luciferase enzyme (Connor et al., 1995; He

et al., 1995) were obtained from the National Institutes of Health (NIH) AIDS

Research and Reference Reagent Program (NIH ARRRP). The plasmid

pSVIII-JRCSF, expressesing the env of the primary isolate JRCSF, has been

described previously (Zwick et al., 2001). A plasmid expressing codon-opti-

mized, full-length env of SIVmac239 was from the Burton laboratory (The

Scripps Research Institute). Pseudotyped viruseswere generated in 293T cells

as described (Zwick et al., 2001). Solubilized monomeric gp120 was obtained

by adding detergent (Empigen, Sigma-Aldrich, St. Louis, MO, USA; 1% [v/v]

final concentration) to the harvested culture supernatants to lyse virions.

Detergent-treated supernatants were made fresh and used immediately. For

neutralization assays, supernatant containing pseudotyped virus was har-

vested, aliquoted, and stored at �80�C until needed.

Neutralization Assays

Neutralization assays with single-round infectious pseudovirus were per-

formed essentially as described elsewhere (Zwick ,et al., 2001), using

U87.CD4+CCR5+ target cells (Björndal et al., 1997) obtained from the NIH

ARRRP. The virus wasmixed with an equal volume of antibody 2G12 or pooled

heat-inactivated serum and incubated for 1 hr at 37�C. This mixture was then
vier Ltd All rights reserved
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added to the targets cells and incubated for a further three days. Luciferase

activity in cell lysates wasmeasured on a luminometer (Viktor X5; PerkinElmer,

Ontario, Canada) using luciferase assay substrate (Promega, Madison, WI,

USA). The percentage of virus neutralization at a given antibody concentration

or serum dilution was determined by calculating the reduction in luciferase

activity in the presence of antibody relative to virus-only wells and subtraction

of luciferase background activity from cell-only wells.

ELISA

Enzyme-linked immunosorbent assays (ELISAs) were performed to measure

the binding of 2G12, Qb-Man4, and Qb-Man9 rabbit sera, and anti-Rv3 mouse

sera to antigen (LOS, solubilized gp120, BSA-Man4). Primary antibody binding

was detected using relevant alkaline-phosphatase conjugated Fc-specific

secondary antibodies (Jackson ImmunoResearch, West Grove, PA, USA) in

conjunction with a p-nitrophenyl phosphate substrate (Sigma, St. Louis, MO,

USA). ELISA signals were measured at 405 nm. All ELISAs were performed

in duplicate or triplicate.

Direct Antigen Binding ELISA

ELISAs to measure 2G12 and serum binding to LPS coated directly onto poly-

vinyl microtiter plates were performed essentially as described in a previous

report (Pantophlet et al., 1998), except that the blocking step was performed

with PBS supplemented with 3% BSA, and all antibody dilutions were made

in PBS supplemented with 1% BSA (PBS-1% BSA). Serum antibody binding

to BSA-Man4 glycoconjugate was performed as described elsewhere (Astron-

omo et al., 2008).

Antigen Capture ELISA

Antibody binding to solubilized gp120 was performed as described previously

(Pantophlet et al., 2003) by capturing the gp120 onto microtiter plates coated

with anti-gp120 antibody D7324 (Aalto Bioreagents, Dublin, Ireland). The re-

maining steps were performed as described above.

Inhibition ELISA

For ELISA inhibition experiments with antibody 2G12, serial twofold dilutions of

the antibody in PBS-1% BSA were mixed with BSA-coated microtiter plates

with an equal volume of antigen (fixed concentration) diluted in PBS-1%

BSA. After incubation (1 hr at RT), 50 ml of the mixture was added to recombi-

nant gp120-coated microtiter plates blocked with 3% BSA. Detection of

antibody binding was performed as described previously.
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